MEKK3-mediated signaling to p38 kinase and TonE in hypertonically stressed kidney cells.
نویسندگان
چکیده
Mitogen-activated protein kinase (MAPK) cascades contain a trio of kinases, MAPK kinase kinase (MKKK) --> MAPK kinase (MKK) --> MAPK, that mediate a variety of cellular responses to different signals including hypertonicity. The signaling response to hypertonicity is conserved across evolution from yeast to mammals in that it involves activation of p38/SAPK. However, very little is known about which upstream protein kinases mediate activation of p38 by hypertonicity in mammals. The MKKKs, MEKK3 and MEKK4, are upstream regulators of p38 in many cells. To investigate these signaling proteins as potential activators of p38 in the hypertonicity response, we generated stably transfected MDCK cells that express activated versions of MEKK3 or MEKK4, utilized RNA interference to deplete MEKK3, and employed pharmacological inhibition of p38 kinase. MEKK3-transfected cells demonstrated increased betaine transporter (BGT1) mRNA levels and upregulated tonicity enhancer (TonE)-driven luciferase activity under isotonic (basal) and hypertonic conditions compared with empty vector-transfected controls; small-interference RNA-mediated depletion of MEKK3 downregulated the activity of p38 kinase and decreased the expression of BGT1 mRNA. p38 Kinase inhibition abolished the effects of MEKK3 activation on BGT1 induction. In contrast, the response to hypertonicity in MEKK4-kA-transfected cells was similar to that observed in empty vector-transfected controls. Our data are consistent with the existence of an input from MEKK3 -->--> p38 kinase -->--> TonE.
منابع مشابه
The Role of MEKK3 Signaling Pathway in the Resistance of Breast Cancer Cells to TNF-Alpha-Mediated Apoptosis PRINCIPAL INVESTIGATOR:
Ling Yu, Huang Q., Kim K., Wang X. and Su, B. Role of MEKK3 signaling in the resistance of breast cancer cells to TNFa-mediated apoptosis. Breast Cancer Research Program meeting, DOD, Philadelphia, PA. June 6-12, 2005. Presentation: Poster presentation: Ling Yu, Juang,Q., Kim K., Wang X. and Su, B. Role of MEKK3 signaling in the resistance of breast cancer cells to TNFa-mediated apoptosis. Brea...
متن کاملMEKK3 Regulates IFN-γ Production in T Cells through the Rac1/2-Dependent MAPK Cascades
MEKK3 is a conserved Ser/Thr protein kinase belonging to the MAPK kinase kinase (MAP3K) family. MEKK3 is constitutively expressed in T cells, but its function in T cell immunity has not been fully elucidated. Using Mekk3 T cell conditional knockout (T-cKO) mice, we show that MEKK3 is required for T cell immunity in vivo. Mekk3 T-cKO mice had reduced T cell response to bacterial infection and we...
متن کاملMEKK3 is required for endothelium function but is not essential for tumor growth and angiogenesis.
Mitogen-activated protein kinase kinase kinase 3 (MEKK3) plays an essential role in embryonic angiogenesis, but its role in tumor growth and angiogenesis is unknown. In this study, we further investigated the role of MEKK3 in embryonic angiogenesis, tumor angiogenesis, and angiogenic factor production. We found that endothelial cells from Mekk3-deficient embryos showed defects in cell prolifera...
متن کاملInactivation of mitogen-activated protein kinase signaling pathway reduces caspase-14 expression in impaired keratinocytes
Objective(s):Several investigations have revealed that caspase-14 is responsible for the epidermal differentiation and cornification, as well as the regulation of moisturizing effect. However, the precise regulation mechanism is still not clear. This study was aimed to investigate the expression of caspase-14 in filaggrin-deficient normal human epidermal keratinocytes (NHEKs) and to explore the...
متن کاملInhibition of tumor necrosis factor-[alpha]-induced SHP-2 phosphatase activity by shear stress: a mechanism to reduce endothelial inflammation.
OBJECTIVE Atherosclerosis preferentially occurs in areas of turbulent flow, whereas laminar flow is atheroprotective. Inflammatory cytokines have been shown to stimulate adhesion molecule expression in endothelial cells that may promote atherosclerosis, in part, by stimulating c-Jun N-terminal kinase (JNK) and nuclear factor (NF)-kappaB transcriptional activity. METHODS AND RESULTS Because Sr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 291 4 شماره
صفحات -
تاریخ انتشار 2006